top of page

Companion development boards for easy prototyping and deployment.

Notecarriers are available in several form-factors to facilitate rapid prototyping. Depending upon the variant, a Notecarrier may be designed with direct host integration, size optimization, integrated cellular/Wi-Fi and GNSS antennas, or even to be soldered directly into a solution for low-volume production.

Functional Description

Notecarriers are designed to bridge the gap between prototype and production for the Notecard. The Notecard is designed to be socketed directly onto the circuit board using an edge connector socket, along with a customer's MCU, sensors, and controls. While such a model provides a highly modular configuration for the final product, it can make prototyping unnecessarily difficult.

Notecarriers offer breakout connections for the Notecard, as well as circuitry to provide power management, protection and signal amplification.


  • Simple. Provides breadboard compatible pins or solderable mask for direct connections.

  • Compatible. Level shifters ensure compatibility with 3.3V or 5V equipment.

  • Convenient. Powered by a micro-USB connector (requires 2A supply).

  • GPS Ready. Models are either active GPS compatible, or feature a built-in antenna to enable GNSS connectivity.

Package Configuration

Notecarrier-A (Antenna)

Notecarrier-A (CARR-A) is designed for building battery-powered wireless applications.

View in Store


  • Pre-soldered female Notecarrier-A 22-pin header for easy access to Notecard edge connector pins.

  • Notecard edge connector socket and mounting screw receptacle.

  • Micro-USB port to power Notecarrier and provide a USB Serial command interface to Notecard.

  • Onboard cellular/Wi-Fi and active GPS antennas.

  • External Nano-SIM slot for additional carrier connectivity.

  • JST PH connector for a LiPo battery.

  • JST PH connector for a solar panel.

  • Two Qwiic connectors for connecting I2C peripherals.

  • LiPo charging circuit.

  • PCB Dimensions: 68mm x 75mm

  • Center of Mounting Holes: 59mm x 66mm

Power Information


All Notecarriers can be powered by connecting directly to the Micro-USB port. However, most installations will not have USB power available, so several alternate power options are provided by the various Notecarrier models:

  • attaching a LiPo battery.

    The LiPo battery must be a single-cell 3.7V battery with a 2-pin JST PH connector.

  • attaching a solar cell (must be accompanied by LiPo).

    The solar charging circuit is designed for use with a 4.5-7V solar panel.

  • applying 2.5-5.5VDC to the V+ pin.

    Commonly provided via DC power supply or non-rechargeable battery.


Typical USB ports may only be capable of supplying 500 mA of current, which might not be enough to power Notecard during a cellular connection to a GSM network (which can spike to 2A). In this situation, you're advised to supplement power to your Notecarrier with an external source (e.g. a LiPo battery).

GPS (GNSS) Antenna Requirements

All Notecarrier models are designed to support active GPS, and several Notecarrier models provide built-in antennas ready to be connected to a Cellular Notecard using the included U.FL cables.

Active GPS Onboard Antenna

The Notecarrier-A models feature built-in, active GPS antennas and are designed with a sufficient buffer to isolate the antenna and minimize interference with the other electronics. Notecarrier-A models do NOT support external GPS antennas.

Pin Name

**For detailed information regarding the solar charging circuit calculations and behavior, please refer to the Blues Notecarrier-A Series Solar JST Input application note.

Absolute Maximum Ratings



Actual values may vary based on local conditions such as atmospheric conditions and distance to the cell tower.

Design Files

Open source hardware designs for all Notecarriers are maintained in the note-hardware GitHub repository.


Contact Information

Blues Inc.
50 Dunham Ridge Suite 1650
Beverly, MA 01915

bottom of page